
Implementation of Fault Slip Through in Design Phase of the Project

Lovre Hribar
Ericsson Nikola Tesla, d.d.
Poljicka 39, Split, Croatia

Phone: +38521435914, E-mail: Lovre.Hribar@ericsson.com

Abstract: The Fault Slip Through (FST) process is a way to
secure early, correct and cost effective fault detection through
analysis of issued trouble reports. A way to secure that faults
are found in the right phase; Right phase means the most
cost-efficient phase. It is a (fault based) method for identifying
improvement opportunities. A method of measuring how
many percent of faults inserted in one phase of development
are detected and corrected in a later phase of testing and/or
operation. The process brings many advantages such as early
correct and cost effective fault detection, enables fault slip-
page measurements, avoiding doing the same mistakes over
and over again, less redundant testing and closer test coordi-
nation, improved quality and less stopping faults, shorter lead
times and improved delivery precision and finally less re-
source consumption in the latest phases of the projects (cost
efficiency). This article has shown that the FST from the
process/method point of view should be very efficient in very
large projects with a high complex solution.

I. INTRODUCTION

The number of faults in a large software project has a
significant impact on project performances and hence is an
input to project planning. As the quality level of the final
product is set at the beginning of the project, a large num-
ber of faults can result in project delays and cost overruns.
For project planning purposes and for quality management,
an important measure is the trend of TR inflow in the pro-
ject � i.e. how many trouble reports (faults) are reported in
a particular time [1].

The TR inflow is a measure which is eminent on the
project level and depends on the sub-projects (or work
package) testing phase. TR inflow is one of the most impor-
tant variables to monitor in large scale software projects. It
provides the management with a possibility of identifying
whether a given project is not going to meet the set goals
and to adjust the project plan, if needed. It allows also the
organization to optimize resource allocation for projects �
e.g. when there is a large TR inflow, the organization needs
to provide additional person-hours to keep the project on
track (e.g. by ordering overtime).
Large software projects have very different dynamics to
small projects; the number of factors that affect the project
is much larger than for small and medium software pro-
jects. Large software projects also tend to develop complex

software-hardware systems. The current practices for large
software projects at Ericsson Nikola Tesla rely heavily on
expert estimations, which are rather time consuming; in
particular the experts use Case Based Reasoning (CBR,
(Maiden and Sutcliffe, 1993) while constructing the predic-
tions for fault inflow � by identifying similarities and dif-
ferences between projects the experts construct the predic-
tions.
FST approach results in a method which is simple and
which has high-cost efficiency (e.g. the costs of miss-
predictions are smaller to the costs of building and main-
taining more accurate models), which could be seen as a
trade-off between prediction accuracy and costs of predict-
ing.

II. QUALITY

Everyone agrees that quality is important, but few agree
on what quality is. Kitchenham (1989) notes that "quality
is hard to define, impossible to measure, easy to recog-
nize�. Gilles states that quality is "transparent when pre-
sented, but easily recognized in its absence"[3].
For instance, when someone tells me that �good enough is
not good enough,� I remember the stakeholder and critical
purpose perspectives and translate that apparently para-
doxical statement into something I can question, such as
�good enough for you is not good enough for me� or �good
enough to survive is not good enough to succeed.� Then
the dialogue becomes one of examining whose values mat-
ter or what purpose we are really trying to achieve. Confu-
sion about Good Enough Software is understandable and
forgivable, since no one has published an actual detailed
description of what Good Enough means. Jones seems to
define it as the practice of deliberately leaving bugs in the
code so as to shorten the schedule. I�ve heard other people
define it as providing the minimum quality that you can get
away with. [2].

Garvin concluded that "quality is a complex and multi-
faceted concept." Garvin described quality from five dif-
ferent perspectives: the transcendental view, that sees qual-
ity as something that can be recognized, but not defined;
the user view, which sees quality as fitness for the user's
purpose; the manufacturers view, which sees quality as
conformance to specification; the product view, which sees
quality as tied to inherent characteristics of the product;

mailto:Lovre.Hribar@ericsson.com

and the value-based view, which sees quality as dependent
on what a customer is willing to pay for it [4].

After a decade of performing process improvement,
rework for organization's software development projects
was dramatically reduced all over the world. Economically,
the concept arises of right sizing the Quality Assurance
(QA) function with respect to the needs of the customer(s)
or the quality goals of the producer organization. There is a
cost for quality; it is not free.

At a minimum, QA functions should be sized suffi-
ciently to satisfy the customer's requirement for product
quality. The customer wants the product at a low price with
no flaws. The producer wants to make money, be competi-
tive, and increase business � QA is a cost to be trimmed.
Clearly, it is impossible to simultaneously satisfy these
parties. In competitive areas (multiple producers of the
same product), the marketplace decides the product price.
From the producer's perspective, QA needs to be efficient
and rework minimized. Minimizing the cost of QA and
rework makes the product more competitively priced and
maximizes profit.

A good production process will satisfy nearly all of the
customer's requirements without QA, i.e., quality is built
in, not inspected in. The customer, reasonably, cannot ex-
pect a perfect product. However, customers can mitigate
their risk of purchasing poor products by testing perform-
ance and inspecting physical details during the production
process and prior to accepting delivery. His investment in
product testing and inspection is an expense, and a portion
of the product price is attributable to the customer- gener-
ated rework. Minimizing the expenditure for QA yet meet-
ing the customer's quality requirement is not a simple mat-
ter [5].

In the software development process at Ericsson Nikola
Tesla, while quality is seen from all of the above views, the
most important view is that of the project managers. The
situation in which the software is developed and used heav-
ily influences the project manager's view.

To accomplish the task, project managers must have in-
dicators for improving the processes and achieving the
needed level of quality. Thus the project manager's view of
software quality is pragmatic and relatively simple - high
quality software is software that "works well enough" to
serve its intended function and is software that is "available
when needed" to perform that function.

The criterion of "Works Well Enough" includes satis-
faction of functional, performance, and interface require-
ments as well as the satisfaction of typical "ility" require-
ments such as reliability, maintainability, reusability and
correctness.

The criterion of "Available When Needed" is depend-
ent upon the software's role in the system. Thus the project
manager is interested in a "pragmatic" quality model and
metrics program, one that will help in the successful devel-
opment and operation of a specific system. Any model and
associated metrics program that is to be funded by a project
manager must be aimed at satisfaction of the two criteria
and at the identification of risks that they will not be met.

III. FAULT SLIP THROUGH DEFINITION

FST is the basic measure used by the method suggested

in this paper. FST is similar to phase containment meas-
urements where faults should be found in the same phase
as they were introduced [8]. The essence of such ap-
proaches is to analyze when faults are inserted and found
and from that determine which faults are in-phase and out-
of-phase [8]. The time between when the fault was inserted
and found is commonly referred to as �fault latency�.

Fig. 1. Fault latency versus FST

Since most faults are inserted during early development

phases, e.g. requirements elicitation, design, and imple-
mentation, the fault latency measure is not good at evaluat-
ing the quality of the verification process. Further, if for
example a test activity is improved, it is not possible to use
measurements based on when faults were inserted to evalu-
ate the result since only later phases are affected by the
improvement. Instead, the FST concept considered more
appropriate because the primary purpose of measuring FST
is to make sure that the test process finds the right faults in
the right phase, i.e. in most cases early.

Figure 1 visualizes the difference between fault latency
and FST. When measuring FST, the norm for what is con-
sidered �right� is the test strategy of the organization. That
is, if the test strategy states that certain types of tests are to
be performed at certain levels, the FST measure determines
to what extent the test process adheres to this test strategy.
This means that all faults that are found later than when
supposed are considered slips [6].

Faults not identified (slips) during the different steps of
the verification phase are subject to detection by the cus-
tomer during his product testing and inspection. The cus-
tomer's perception of product quality is created largely
from the faults he identifies.

To gain repeat business or good references for new
business, Ericsson strives to minimize the faults that propa-
gate, or leak, through his production and quality processes.

One of the most common ways that Ericsson uses FST
data is for evaluating the degree of FST to a verification
phase.

Deskcheck Emulator
Test

Function
Test

Integration
Test

System
Test

TOTAL
NUMBER OF

FAULTS
FOUND

FST analysis matrix

Deskcheck

Emulator
Test

Function
Test

Integration
Test

System
Test

NO FAULT SLIPPAGE
FAULT SLIPPAGE
NOT RELEVANT

IN DESKCHECK

18 FAULTS WERE
FOUND THAT SHOULD
HAVE BEEN FOUND IN

EMULATOR TEST

IN EMULATOR TEST

15 FAULTS WERE
FOUND AND SHOULD
HAVE BEEN FOUND IN

EMULATOR TEST

IN FUNCTION TEST

12 FAULTS WERE
FOUND THAT SHOULD
HAVE BEEN FOUND IN

EMULATOR TEST

WHERE THE
FAULTS

SHOULD HAVE
BEEN FOUND

WHERE THE
FAULTS HAVE
BEEN FOUND

Fig. 2. Fault slip through details

To create trend lines from the FST data, the

most easily alternative is to use a TR web based solution
which makes it possible to get real-time updated results,
i.e. assuming that it is able to fetch the measurement data
from the fault database. The appropriate frequency of
measurement points, e.g. weekly or monthly, depends on
the length of the monitored projects.

The result from such measurement points can be seen in
Figure 3. There are two necessary prerequisites to apply
this method:

1. The fault reports should include a field stating which
phase each fault should have been found in, so that the
statistics can be fetched from the fault database regularly.
If this for any reason is not possible, an alternative is to
have regular follow-up meetings, e.g. weekly, where the
FST value of each reported fault is determined.

2. If regular follow-up of the FST trends are going to be
useful, goals that the trends can be compared against
should be set. In our experience, the preferred input for
such a goal is a baseline value obtained from a previously
finished project. Based on this value, the goal should be set
after what differences are expected in the project to study,
e.g. if a planned process improvement aims at reducing the
FST to a certain degree, the goal value should be specified
accordingly.

It is also possible to set a goal without the baseline
value. However, it will then be hard to know what an ap-
propriate goal is. With these overall prerequisites met, it is
then possible to monitor the process quality during the
verification stages of projects.

IV. FST MEASUREMENT

The measurement was conducted at a software devel-
opment department at Ericsson, which develops some soft-
ware products on its main site. The projects develop soft-
ware to be included in new releases of existing products
that are in full operation as parts of operators� fixed net-
works. A typical project such as the one studied in this
paper lasts about 1.5 year and has on more than 70 partici-
pants. The projects are performed according to an in-house
developed incremental development process. Besides in-

spections of documents during design, the products are
verified in five steps: Desk Check, Emulator Test, Function
Test, Integration Test and System Test. According to the
test strategy of the organization, the faults that belong to
different phases are in this paper divided as follows:

Desk Check (DC): Faults found during code review.
Emulator Test (ET): Faults found during unit tests of a
component.
Function Test (FT): Faults found when testing the fea-
tures of the system, e.g. faults in user interfaces and proto-
cols.
Integration Test (IT): Faults found during primary com-
ponent integration, e.g. installation and component interac-
tion faults.
System Test (ST): Faults found when integrating with
external systems and when testing non-functional require-
ments.

Fig. 3. Fault slip through measurement

Figure 3 presents when the faults were found in the

project in relation to the same measurement points as in
Figure 2.
A fault trigger determines which type of test activity that
should identify a fault (originates from IBM �Orthogonal
Defect Classification�). For example, robustness faults
should belong to the trigger �robustness� (no matter which
test activity that found them). The purpose with fault trig-
ger classification is to determine which test activities in
which phases that are fault prone, that is to evaluate the test
process. Can for example be used to identify improvement
areas that will reduce FST. If many of the faults found in
ST belong to a trigger category that FT should cover, this
provides feedback to where FT need to be improved. If a
trigger activity contains few faults during ST but live tests
finds many of that type, it indicates that the corresponding
test activity is performed insufficiently in ST [7].

During the analysis, some of the reported faults were
excluded because they turned out not to be real faults. Ad-
ditionally, requirements faults were not reported in the
fault reporting system. Instead, they were handled sepa-
rately as change requests. Each test level verifies a varying
number of deliveries from the design department depend-
ing on the number of feature increments and the number of
required bug-fix deliveries. Further, to save lead-time, the

verification levels of the increments are performed partly in
parallel, e.g. FT is not completed when ST starts. This in-
troduces a risk for more fault slippages but if ST knows
what in the delivery is tested and not in FT, the ability to
start ST early on the parts of a feature that have been func-
tion tested saves more lead-time than what the additional
cost of FST is worth. This is a major reason why the opti-
mal FST goal rarely is zero. How to follow-up the meas-
urement? Basic measurement formula:
FST (to phase X) = No. faults found in phase X that should
have been found in an earlier phase / No. faults found in
phase X.

V. ANALYSIS OF FST MEASUREMENT
RESULTS

Applying the proposed method on the project in this

paper, we identified some patterns on how the FST trend
changes during a verification level. But why the FST levels
are so different in the beginning and why do they even out
when half of the time has passed? To answer these ques-
tions, the FST data was compared against when the faults
where found to see if that affected the FST distribution.
The fault data is due to confidentiality reasons only pre-
sented as percent of the total number of faults.

The result of the FST to each phase measurement is
presented on Figure 4.

FST graph

0

10

20

30

40

50

60

70

DC ET FT IT ST

FST to DC, ET, FT, IT, ST

FS
T

in
 p

er
ce

nt
ag

e

Series1

Fig. 4. Fault slip through to each phase

The result of the FST from each phase measurement is pre-
sented on Figure 5.

FST from each phase graph

0

20

40

60

80

100

120

DC ET FT IT ST

FST from DC, ET, FT, IT, ST

FS
T

in
 p

er
ce

nt
ag

e

Series1

Fig. 5. Fault slip through from each phase

The first important observation from Figures 4 and 5 is
that the faults were distributed rather evenly over time.
However, the most apparent exception is FT of the project
where the percent faults after a third of the project drop
down on the lowest level of 41 percent. Relating this to the
FST curve explained why the FST level could decrease
from 100 to about 41 percent so fast, i.e. too few faults
were found in the beginning to have a reliable FST value.
On the other hand, when a significant part of the faults
were found early, the curve stabilized early as well, e.g. IT
of project. When cross-checking the project, one can see
that the FST trend reaches a stable level when about 30
percent of the faults have been found.

The major implication of this is that as long as only a
minor part of the faults have been found, the FST values
might still change a lot. This implication however causes a
problem since the total number of faults is not known until
the monitored verification level is finished.

The FST results showed that it is possible to get good
indications of the average input quality already in the first
half of a verification stage. Such data makes it possible to
implement process corrections early. Further, by relating
the FST status to parts that were verified at certain meas-
urement points, causes of FST can also be revealed. Never-
theless, relating a FST value to the percent faults found
does not require an exact science. That is, today, managers
make decisions about software quality using best guesses;
it seems like this will always be the case and the best that
researchers can do is to recognize this fact and do what
they can to improve the guessing process [9].

Fig. 6. What is a good Fault slip through rate

Project managers commonly already estimate total

number of faults, test cases, and test effort as a part of or-
dinary project planning (to be able to estimate delivery
dates), so this should neither be perceived as hard or time-
consuming to do. Regarding the basic FST measurement
used, a basic assumption made is that the defined test strat-
egy equals an efficient process. It is also important to be
aware that a perfect test strategy is not the one that finds
the most faults but rather one that reflects the most efficient
way to assure the quality to a level that makes the custom-
ers satisfied. Therefore, the optimal FST goal is as earlier
mentioned often not zero either Figure 6. Using FST for

performance benchmarking of organizations is not recom-
mendable because of:

Product differences: Product maturity, complex-
ity/architectures affect fault slippage ratios.
Process differences: For example organizations using par-
allel testing (ST starts before FT is finished) gets a higher
fault slippage.
Definition differences: Making a stricter fault slippage
definition increases the fault slippage values, that is, the
gap between the test strategy and current reality affects the
degree of FST.
Cultural differences: Might affect how the measure is
applied.

Therefore, comparisons should foremost be made
against previous releases of the same product [7].

The most common validity critique of FST measure-
ments is that it is subjective, i.e. since the phases belonging
of the faults are determined by the people in the projects
[6]. Finally, regarding the general ability of the results, the
reported FST levels are only generalize within the organi-
zation, i.e. because they are dependent on test strategies
and product complexity. Further, the commonality of the
FST Trends should have some degree of generic pattern,
e.g. that they tend to not change during the second half of
projects. However, this is dependent on the similarity of
the development process applied.

VI. CONCLUSION

 Quality is something very hard to define, but it is a
measure about how confident is user of the services in op-
erator/vendor. It is always about quality and how the prod-
uct In Service Performance (ISP) is. However, an ISP
fault-free product most likely will not be affordable. With-
out some balance to the interests of the QA function, it can
become too large. These are the influences of the classic
market-share dilemma. There is no perfect quality; only
good enough. The big new force that is propelling the good
enough idea is the explosion of market-driven software.
Companies are looking for the shortest path to better soft-
ware, faster, and cheaper. They are willing to take risks,
and they have little patience for the traditional moralistic

arguments in favor of so-called good practices. It�s time
that we developed approaches and methodologies that ap-
ply to the whole craft, not just to space missions, medical
devices, or academic experiments. Formalities, and the
authority behind them, will be reexamined.

But, it must be stressed again, quality is very important
especially today when we have huge competitions on the
market. Also, two customers with the same application
have two views on the quality of the same product. We are
witnesses that some of the big vendors with the long his-
tory are not very successful today on the market. On the
other hand, some new players are very eager to grab mar-
ket cake.

Who will win in this competition? Definitely players
with good enough quality products. And how can we reach
the good enough quality products? FST method described
in this paper will help in early detection of the quality of
the products. On such way, project manager can take ap-
propriate actions to gain quality as we want from our prod-
ucts.

REFERENCES

[1] Miroslaw Staron, Wilhelm Meding, �Predicting Short-Term

Defect Inflow in Large Software Projects � An Initial Evalua-
tion�, 11th International Conference on Evaluation and As-
sessment in Software Engineering, EASE 2007

[2] James Bach, �Good Enough Quality: Beyond the Buzzword�,
Software Realities, 1997.

[3] Hyatt, L.E., Rosenberg, L.H., NASA Goddard Space Flight
Centre, United States of America, �A Software Quality Model
and Metrics for Identifying Project Risks and Assessing Soft-
ware Quality�, ESA 1996

[4] Garvin, D., "What Does 'Product Quality' Really Mean?"
Sloan Management Review, Fall 1984, pp 25-45.

[5] Walt Lipke, "Right Sizing Quality Assurance", CrossTalk,
The Journal of Defence Software Engeneering, July 2004.

[6] Damm, L-O, Lundberg, L., Wohlin C., �Faults-slip-through �
A Concept for Measuring the Efficiency of the T Test Proc-
ess�, Wiley Software Process: Improvement and Practice,
Special Issue, 2006.

[7] ***, �Faults-slip-through measurement�, Internal Ericsson
documentation, Karlskrona, Sweden 2005.

[8] Hevner, A. R., Phase Containment for Software Quality Im-
provement, Information and Software Technology Vol. 39, 13
(1997), 867-877.

[9] Fenton, N., A Critique of Software Defect Prediction Models,
IEEE Transactions on Software Eng., 25, 5 (1999)

	Lovre Hribar
	I. INTRODUCTION
	REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

