
An Example of Using Key Performance Indicators for Software Development
Process Efficiency Evaluation

Ž. Antolić
R&D Center

Ericsson Nikola Tesla d.d.
Complete Address: Krapinska 45, Zagreb, HR-10000, Croatia

Phone: +385 1 365 4584 Fax: +385 1 365 4082 E-mail: zeljko.antolic@ericsson.com

Abstract - This paper gives an overview of possible Key
Performance Indicators (KPI) that can be used for
software process efficiency evaluation. The overview is
based on currently used KPIs in software development
projects on CPP platform. The most important KPIs are
analyzed, and their usage in the process efficiency
evaluation is discussed. The outcome of the measurement is
used to initiate further process adjustments and
improvements. In addition, there is possibility to perform
benchmarking between different development projects,
and based on collected data easier search for best practices
in the projects that can be broadly implemented. Some
proposals and future directions in the area of process
measurement are given.

I. INTRODUCTION

All successful software organizations implement
measurement as part of their day-to-day management
and technical activities. Measurement provides the
objective information they need to make informed
decisions that positively impact their business and
engineering performance. In successful software
organizations, measurement-derived information is
treated as an important resource and is made available to
decision makers throughout all levels of management.

The way measurement is actually implemented and
used in a software organization determines how much
value is realized in terms of business and engineering
performance. Measurement is most effective when
implemented in support of an organization’s business
and technical objectives and when integrated with the
existing technical and management activities that define
a software project. Measurement works best when it
provides objective information related to the risks and
problems that may impact a project’s defined objectives.
In other words, measurement works best when it is
considered a significant, integral part of project
management [1].

Top-performing organizations design their technical
and management processes to make use of objective
measurement data. Measurement data and associated
analysis results support both short and long-term
decision making. A mature software development
organization typically uses measurement to help plan
and evaluate a proposed software project, to objectively
track actual performance against planned objectives, to
guide software process improvement decisions and
investments, and to help assess overall business and
technical performance against market-driven
requirements. A top-performing organization uses

measurement across the entire life cycle of a software
project, from inception to retirement. Measurement is
implemented as a proactive discipline, and measurement
derived information is considered to be a strategic
resource.

Measurement is most important at the project level.
Software measurement helps the project manager do a
better job. It helps to define and implement more
realistic plans, to properly allocate scarce resources to
put those plans into place, and to accurately monitor
progress and performance against those plans. Software
measurement provides the information required to make
key project decisions and to take appropriate action.
Measurement helps to relate and integrate the
information derived from other project and technical
management disciplines. In effect, it allows the software
project manager to make decisions using objective
information.

In this article, the overview of process measurement
in software development projects on CPP platform will
be given, and some Key Performance Indicators (KPIs)
will be discussed. Also, one example of project
benchmarking will be presented. At the end, some
improvement proposals, and directions for further work
will be given.

II. ISO/IEC 15939 Software Measurement Process

The International Standard ISO/IEC 15939 identifies

the activities and tasks that are necessary to successfully
identify, define, select, apply, and improve software
measurement within an overall project or organizational
measurement structure. It also provides definitions for
measurement terms commonly used within the software
industry [2]. The software measurement process itself is
shown on Fig. 1.

Fig. 1. ISO/IEC 15939 Software Measurement Process

Technical and
Management

Processes

Plan
Measurement

Perform
Measurement

Evaluate
Measurement

Establish
and Sustain
Commitment

Measurement
Plan

New
Issues

Analysis
Results

User
Feedback

Analysis Results
and Performance

Measures

Objectives and
Issues

Improvement
Actions

Scope of
Measurement
Process

Measurement
Requirements

III. CMMI Process Area Measurement and Analysis

According to Capability Maturity Model Integration

(CMMI), the purpose of Measurement and Analysis is to
develop and sustain a measurement capability that is
used to support management information needs [3].

The Measurement and Analysis process area involves
the following:

• Specifying the objectives of measurement and
analysis such that they are aligned with
identified information needs and objectives;

• Specifying the measures, data collection and
storage mechanisms, analysis techniques, and
reporting and feedback mechanisms;

• Implementing the collection, storage, analysis,
and reporting of the data;

• Providing objective results that can be used in
making informed decisions, and taking
appropriate corrective actions.

The integration of measurement and analysis
activities into the processes of the project supports the
following:

• Objective planning and estimating;
• Tracking actual performance against

established plans and objectives;
• Identifying and resolving process-related

issues;
• Providing a basis for incorporating

measurement into additional processes in the
future.

The initial focus for measurement activities is at the
project level. However, a measurement capability may
prove useful for addressing organization wide
information needs. Projects may choose to store
project-specific data and results in a project-specific
repository. When data are shared more widely across
projects, the data may reside in the organization’s
measurement repository.

The Measurement and Analysis contexts according to
CMMI model is shown on Fig. 2.

Fig. 2. Measurement and Analysis Context

IV. Data Collection Model

All projects have specific objectives that are typically

defined in terms of system capability, resource budgets,
milestones, quality, and business or system performance
targets. Project success depends largely on how well
these objectives are achieved. Project issues are areas of
concern that may impact the achievement of a project
objective: risks, problems, and lack of information, for
example.

The most information needs in one project can be
grouped into general areas, called information
categories. We can identify seven information
categories, which represent key areas of concern for the
project manager [4]:

• Schedule and Progress;
• Resources and Cost;
• Product Size and Stability;
• Product Quality;
• Process Performance;
• Technology Effectiveness;
• Customer Satisfaction.

The information about project performance is
collected in cycles. The typical data collection cycle is
four weeks. Based on achieved results, product supplier
(software development project) performs analysis and
defines operation excellence action plan within two
weeks time frame. When actions are established, the
measurement results and operational excellence action
plans are ready for presentation on Operating Steering
Group (OSG) for the project. Results form the all
projects and OSG meetings are input for R&D Center
Steering Group meeting, organized each quarter [5].

The data collection process is shown on Fig. 3.

Fig. 3. Overview of data collection process

The measurement of project performance gives

organization increased opportunities to improve and
share good practices, and to increase the possibility to
reach wanted operational efficiency. The measurement
activities responsibility is on the corporate R&D level.
This responsibility covers forum, processes, tools,
definitions of metrics, collections, analyzing and
reporting on corporate level.

 Measurement Indicators

 Collect
Measurement

Data
 Communicate

 Results

Store
Data &
Results

Analyze
Measurement

Data

Provide Measurement Results

 Measurement
Repository

Measurement Objectives Procedures,
Tools

 Specify
Measures

 Establish
Measurement

Objectives

 Specify
Analysis

Procedures

 Specify
Data

 Collection
and Storage
Procedures

Align Measurement Analysis Activities

KPI Data Collection
Cycle

Supplier Scorecards
Produced

KPI Data Collection
Cycle

Supplier Scorecards
Produced

Supplier Scorecards
Produced

R&D
Supplier

SG

2 weeks4 weeks

Supplier OSG’s

4 weeks 2 weeks

Supplier
OE Action
Planning

OE Actions
Established

Supplier OSG’s
completed

R&D Supplier
SG meeting
completed

Start of

Quarter

End of

Quarter

R&D
Supplier

SG

2 weeks2 weeks4 weeks4 weeks

Supplier OSG’s

4 weeks4 weeks 2 weeks2 weeks

Supplier
OE Action
Planning

OE Actions
Established
OE Actions
Established

Supplier OSG’s
completed

Supplier OSG’s
completed

R&D Supplier
SG meeting
completed

R&D Supplier
SG meeting
completed

Start of

Quarter

End of

Quarter

Data Collection End DateData Collection End Date

Define / Refine Baseline

Collect Data

Validate Data Create Scorecards
12 month data window

Cut-Off DateCut-Off Date

V. KPI Definitions for CPP Development Projects

In order to follow performance of CPP software

development projects, we have defined set of KPIs.
Some of KPIs are applicable for early project
development phases, some of them for complete life
cycle, and some of them only for product maintenance.

The set of KPIs, their behavior and applicability are
shown on Fig. 4 [6].

For each KPI we have defined:
• Description;
• Results format;
• Formula;
• Frequency.

A. Schedule Adherence

Definition:
Measures timeliness and ‘quality’ of deliveries

relative to baseline schedule and acceptance criteria.
Based on percentage deviation between planned and
actual lead times [7].

Result format:
Reported as a percentage, 100% is the highest result.
Formula:

[1 – ABS (ALT – PLT) / PLT] x 100

PLT = Planned Start Date – Planned Finish Date
ALT = Actual Finish Date – Planned Start Date
If no planned start date is specified for intermediate or

parallel deliverables, the earliest planned start date (e.g.
TG2 or assignment start date) may be used.

Planned Start/Finish Dates are replaced with revised
dates in case of Ericsson caused/mandated CRs.

B. Assignment Content Adherence

Definition:
Measures supplier’s ability to deliver full assignment

scope by end of assignment. It is based on percentage of
completed functionality/requirements [7].

Result format:
Reported as a percentage, 100% is the highest result.
Formula:

(No. of Compl. Req. / No. of Commit. Req.) x 100

Requirements are smallest measurable ‘packages’ of
functionality; e.g. features, documents, items in
Statement of Compliance, Requirement Specification,
Requirement Management Tool, or Implementation
Proposal.

Number of Completed Requirements counts packages
of functionality delivered during the entire assignment.

Total Number of Committed Requirements counts the
packages of functionality originally planned for the
assignment; may be revised based on Change Request
guidelines.

Frequency:
Measured and reported at the end of an assignment.

KPI measurement has to be based on requirements

that are the smallest objects of measurement and easily
measurable. For example, content adherence for an
assignment with 2 major deliveries should not be based
at the ‘delivery level’ but rather based at the core
functionalities/requirements within each delivery.
Assignments where scope is not frozen at TG2 (Project
GO decision) need to handle scope additions through the
CR handling guidelines.

Pre-TG2 and
RXI

Delivery to Commitment
Delivery of Full Scope

Overall Assignment
Content AdherenceContent

Efficiency in resolving quality issues
Reduction in cost of poor quality

Cost per TR (CTR)Cost of Quality

Service Levels

Assignment Phase
Design

Follow-up
(Maintenance
PRA to GA)

Maintenance
(Post GA)

TR response to Commitment

Quality of Supplier Deliverables to Ericsson
Delivery of fault free deliverables to Ericsson

Delivery to Commitment
Accurate Estimating
Avoidance of Buffers

Delivery to Commitment
Accurate Estimating
Avoid Delaying Scope Until Later Assignments

Desired Behaviour Development
(TG2-PRA)

Fault Slip Through
(FST)

TR Closure Rate

Quality

Cost AdherenceCost

Schedule
AdherenceTime

KPIsPerformance
Metric Pre-TG2 and

RXI

Delivery to Commitment
Delivery of Full Scope

Overall Assignment
Content AdherenceContent

Efficiency in resolving quality issues
Reduction in cost of poor quality

Cost per TR (CTR)Cost of Quality

Service Levels

Assignment Phase
Design

Follow-up
(Maintenance
PRA to GA)

Maintenance
(Post GA)

TR response to Commitment

Quality of Supplier Deliverables to Ericsson
Delivery of fault free deliverables to Ericsson

Delivery to Commitment
Accurate Estimating
Avoidance of Buffers

Delivery to Commitment
Accurate Estimating
Avoid Delaying Scope Until Later Assignments

Desired Behaviour Development
(TG2-PRA)

Fault Slip Through
(FST)

TR Closure Rate

Quality

Cost AdherenceCost

Schedule
AdherenceTime

KPIsPerformance
Metric

Key: KPI Applicable to Assignment KPI N/A to Assignment May be applicable (decided case by case)Key: KPI Applicable to Assignment KPI N/A to Assignment May be applicable (decided case by case)

Fig. 4. KPI Definitions for CPP projects

C. Cost Adherence

Definition:
Measures supplier’s ability to deliver assignment

scope within the agreed/committed cost, including man-
hour, lab and travel costs. Based on deviation between
committed (baseline) and expected (actual + forecast)
costs at assignment/deliverable level [7].

Result format:
Reported as a percentage, 100% is the highest result.
Formula:

[1 – (ECost – CCost) / CCost] x 100%

Committed cost is the baseline at assignment start.
Contingency value (buffer) should be specified
separately, if known.

Expected Cost to Complete is (actual + forecast) each
month:

• Actual costs incurred so far;
• Forecast of all remaining Costs to Complete;
• Forecast of contingency sums (optional).

Delivering an Assignment under the Committed Costs
will have neutral impact on the KPI. Aim is to
discourage unnecessarily using budgeted hours;

Frequency:
Measured monthly at assignment level, or at end of

each major deliverable.

Costs have to be defined at assignment level

(mandatory), and optionally (if possible) at deliverable
level, to enable precise change control.

D. Fault Slip Through

Definition:
Measures supplier’s ability to capture faults before

making deliveries to I&V>
• Assuming that supplier conducts Function

Testing (FT);
• Supplier or external organization may

conduct I&V (Integration and Verification)
Testing.

Based on Trouble Report (TR) slippage between FT
and I&V test phases.

• Assuming that TRs are analyzed to identify
‘true’ slipped TRs;

• If TRs are not analyzed, then 0% may not be
the expected best result due to the different
scope in FT and I&V testing [7].

Result format:
Reported as a percentage, 0% is the lowest result.
Formula:

[1 – FT Faults / All Faults] x 100%

Faults are classified as FT or I&V based on testing
phase, not who does the testing. All parties conducting
the testing need to capture the Function Test and I&V
Faults, based on assignment TR Handling
guidelines/tools.

Frequency:
Monthly from start to end of I&V (cumulative data

collecting); or at each ‘drop’ on completion of the
respective I&V.

TRs that do not relate to ‘genuine’ faults, i.e.

cancelled, postponed, duplicated, and rejected TRs, are
to be excluded. All ‘minor’ faults, faults that do not
affect the main operation of the system are to be
excluded.

E. Trouble Report Closure Rate

Definition:
Measures supplier’s ability to answer TRs within the

specified goals. It is based on deviation between the
actual TR answering times and TR goals, set by the
Assignment Owner [7].

Result format:
Reported as lost days, averaged across TR priority.

The lowest result is 0, indicating that the TRs are
answered within the goals.

Formula:

NLD / (OTR+ NTR)

NLD = number of lost days within the time increment
for all open and new TRs

OTR = number of open TRs at beginning of the time
increment

NTR = number of new TRs during time increment
The TR handling time starts at the point at which the

TR enters the supplier organization, and ends at the
point at which the TR is answered.

Time increment is typically 12 months in the past
from reporting date.

Frequency:
Measurement is done on a monthly basis.

F. Cost per Trouble Report

Definition:
Measures supplier’s efficiency in fixing TRs (answer

plus solution), i.e. maintenance costs relative to TRs
resolved, in man-hours [7].

Result format:
Reported as man-hours.
Formula:

Cost of Maintenance / Number of TRs Resolved

Cost of Maintenance activities is total hours spent on
TR Handling activities.

Number of TRs resolved are TRs that include a
fix/solution.

The result is expressed as a rolling average, over past
12 months from the current reporting date, across all
product areas in maintenance.

Frequency:
Measurement is done on a monthly basis.

VI. Project Benchmarking

Benchmark office measures and analyzes the

development unit performance in order to improve their
Operational Efficiency, for example by good practice
sharing across organization. The measurements are
focused towards the project perspectives of the
development unit performance, and possibilities to make
external or internal benchmarking possible. The
Benchmark office supports the development unit
steering in analyzing their operational and process
efficiency and improvements. The Benchmark Office is
responsible for the process, definitions and tools, as well
as performing analysis on corporate level.

The one example of CPP project benchmarking is
shown on Fig. 5. It can be seen from the figure that most
of the KPIs are on the commitment or stretched level.
That means project has fulfilled its goals.

The project marked with D1 is the oldest measured
project, and it has the lowest achieved results. The
successor projects have performed much better. That is
achieved by performing the root cause analysis of the
KPIs. The analysis has resulted with corrective and
preventive actions in the next projects, and positive
result is visible.

The project marked with D2 had problems with
budget (visible from Cost Adherence KPI). Detailed
analysis shown that initial estimations were too
optimistic, and 3rd party supplier part of the project has
spent much more than it was planned.

The benchmarking itself has no intention to initiate
only the competition between projects and organization.
The full benefit can be achieved if results are deeply
analyzed, and preventive and corrective actions are set
for the ongoing and future projects (learning from
experience).

VII. Improvements and Future Directions

The set of KPIs described in this article is the basic

set, established 18 months ago. We are today in the
position where we have enough measurement results to
perform precise analysis. But, it is obvious that this is
not complete list of KPIs that can be measured in the
software development project. Many other interesting
data can be collected.

Two product life cycle phases are the most important
for new, more advanced KPIs and measurements in the
future; verification phase and maintenance phase.

In the verification phase of the project we have to
measure how efficient our verification activities are. It is
not enough to measure number of executed test cases,
and pass rate. These measurements are not telling us
much about expected product quality. The idea is to
establish fault rate measurement. The fault rate measures
how many faults we discover in certain time interval
(typically one week). If fault rate decrease with time,
that means product quality is improving by performing
test activities. Additionally, we can set lower fault rate
limit, in order to plan how long we will go with our
testing, and when we can stop with testing assuming that
product has reached expected quality level.

In the maintenance phase of the life cycle we would
like to measure product maintenance cost compared with
development effort. At the moment we know the
average cost to remove the fault. According to this
measurement it is difficult to compare quality level for
two different products. The new KPI can measure total
product maintenance cost in the first year of operation,
and compare it with total development cost. The result
can be expressed as percentage of product development
cost. With this measurement we will be able to compare
quality level for different products in the maintenance
phase of the life cycle.

KPI's

Cost per TR (man-hours)

Schedule Adherence (%)

24,4%

Supplier Average

Fault Slip Through (%)

TR Closure Rate
(lost days)

100,0%

49,4

Content Adherence
(at Assignment end)

Cost Adherence (%)

98,9%

98,0%

3,3

KPI Performance Range of Assignments

Supplier Assignment KPI Results vs. Sponsor Expectations

Maintenance Assignment KPI's
3510 715

99%98%95%90%85%

99%98%95%90%85%

15%30%45%60%80%

99%98%95%90%85%

Development Assignment KPI's

405080 60100

D4
D3

D3
D2

D2

D1

D1
D2

D1

M3

DFU1

DFU2

M3
DFU2

DFU1

D2
D1

D3

D4

D4

D5
D6

Fig. 5. CPP Project Benchmarking

VIII. Conclusion

The measurement method and KPIs described in this

article are coming from the CPP software development
projects at Ericsson. We have started this process as
measurement program, and have implemented in all
development projects from the end of year 2006. The
data were collected and analyzed on monthly basis, and
used as input for further improvement activities in the
development projects.

The measurement process should be an integral part
of the way business is conducted. Data must be provided
early enough to allow management to take actions.
Results must be communicated throughout the
organization in a timely manner. Decisions should not
wait for perfect data, but should be based on accurate
data, supported by risk management and root cause
analysis.

Both the measurement process and the specific KPIs
should be periodically evaluated and improved.
Measurement is an iterative process; the KPIs are
refined as information needs change and the
organization implements improvement actions.

In the future, we can expect more demands on
software product quality, reduced project lead-time, and
reduced project budgets. The possible answer on these
demands is to always have accurate data about project
and product performance, and fast improvement
programs, preventive and corrective actions based on
analysis of key performance indicators in the project.

References

[1] J.McGarry, “Measurement Key Concepts and
Practices,” Practical Software & System Measurements,
USA, 2003.

[2] ***, “Systems and Software Engineering - Measurement
Process”, International Organization for Standardization,
Geneva, 2002.

[3] M.B.Chrissis, M.Konrad, S.Shrum, “Capability Maturity
Model Integration – Guidelines for Process Integration
and Product Improvement”, Pearson Education Inc.,
Boston, 2004.

[4] D.Ishigaki, C.Jones, “Practical Measurement in the
Rational Unified Process”, Rational Software, USA,
2003.

[5] ***, “Data Collection Process 2007 – R&D Consultancy
Supplier Benchmark”, Internal Ericsson documentation,
Stockholm, Sweden, 2007.

[6] Z.Antolic, “CPP KPI Measurements 2008”, Internal
Ericsson Documentation, Zagreb, Croatia, 2004.

[7] C.Braf, “KPI Definitions and Guidelines”, Internal
Ericsson Documentation, Stockholm, Sweden, 2006.

