
 Adapting Agile practices in globally distributed large scale  
software development 

 
Mario Ivček 

Research and Development Centre 
Ericsson Nikola Tesla 

Krapinska 45, 10 000 Zagreb, Croatia 
Telefon: +38513654619  Fax: +38513653548  E-mail: 

mario.ivcek@ericsson.com 

Tihana Galinac 
Faculty of Engineering 
University of Rijeka. 

Vukovarska 58, 51 000 Rijeka, Croatia 
Telefon: +385 51 651 583  Fax: +385 51 675 818  E-mail: 

tihana.galinac@riteh.hr 
 

 

 

Abstract – Nowadays, in time of rapid software 
development and continuous change, the software 
development organizations have increasingly been 
adapting the Agile practices within their software 
development methodologies. This paper discusses 
experiences and observations of applying a set of selected 
Agile practices within globally distributed organization 
responsible for development of large scale software 
systems for evolving telecommunication products. The 
paper provides valuable material for practitioners who 
plan to adopt agile principles in similar environment 
conditions. Also we give possible direction for future 
research.  

 
 

I. INTRODUCTION 
 
Rapid environmental changes bring uncertainty into 

software development, introduce frequent changes, 
shorter time to market and frequent deliverables of new 
and enhanced functionalities of software product. To 
cope with these new conditions a group is formed called 
'Agile Alliance' with revolutionary different 
development approach from those product and process 
oriented. The group has specified the main ideas for the 
forthcoming new era of software development and 
unified it under the common agile development method 
as follows, [1]: 
• individuals and interactions over processes and 

tools, 
• working software over comprehensive 

documentation, 
• customer collaboration over contact negotiation, 
• responding to change over following a plan. 

Based on these overall ideas many different software 
development methods have been categorized as Agile 
such as eXtreme Programming (XP) [2], Crystal [3], 
Scrum [4] and others, all reviewed in [5]. Agile 
development methods were proven as good for rapid 
development environments with high change rate 
because they reduce risk and time to market, and still 
secure required quality levels. However, comparison of 
the resulting quality levels by use of Waterfall and Agile 
methods is difficult because their initial development 
conditions as stated in [6].  

Even though the Agile methods were primarily 
designed for co-located small and medium size teams, 
there is increased research effort in the field of how to 
adopt them in large globally distributed environment 
(GSD). The study performed in [7] has identified 

numerous possible benefits of applying Agile methods 
and principles on GSD teams. Reported benefits are 
listed as follows: 
• requirements prioritization is focused on 

efficiency and productivity, however, efficiently 
produced features that nobody needs is still waste 
according to [8],  

• continuous integration involves more 
communication and coordination effort,  

• short iterations and frequent build bring 
transparency into work progress to all partners 
involved into software development,  

• focus on high quality work builds trust and 
respect,  

• early involvement of customer allow frequent 
changes, early corrections of directions to desired 
point, better understanding of requirements, etc.  

There are already many experience reports of 
implementing Agile practices into GSD as [9], [10], 
[11], [12], [13], [14]. The Agile practices that have been 
applied by most of these organizations are following: 
daily build, iterations, increments, frequent integration, 
system metaphor, scheduling according to feature 
priorities, feedback from expert users, pair development, 
self organized teams, etc. With increasing deployment 
of agile principles within GSD organizations there is 
increasing need for evidence about their applicability. 
Due to that reason a group of large companies have 
shared their experiences that are generalized as common 
experiences in [11]. 

Additionally to the experience reports on the 
applicability of Agile practices there are also reported 
experiences in improving the existing processes and 
implementing Agile practices. Experience described in 
[15] reports failure in implementing Agile practices and 
suggests team training, prepared infrastructure prior to 
actual feature development and team involvement into 
decision to adapt agile practices. On the other hand, [11] 
identifies process maturity as prerequisite for successful 
Agile implementation in GSD.  

In this paper we report experiences of implementing 
selected Agile principles within an GSD industrial 
context. The rest of the paper is organized as follows: in 
next section we describe industrial context were the 
study was performed, as well as business drivers for 
introducing Agile practices. Selection of the best 
practices and improvement project that applied these 
practices is elaborated in section three.  Then, in fourth 
section we discuss experiences in introducing Agile 
practices, and finally fifth section concludes the paper. 



II. INDUSTRIAL CONTEXT AND BUSINESS 
DRIVERS  

 
In this section we describe industrial context were the 

study was performed as well as business drivers for 
introducing Agile practices.  

 
A. Industrial context 

 
The study was performed within the Ericsson 

organization.  The organizational unit is globally 
distributed having long tradition of working in global 
environment. The development department and 
integration & verification (I&V) department belong to 
separated organizational subunits and both are divided 
into several dislocated development sites such as 
Sweden, Italy, Croatia, Germany, China, Canada and 
even some external consultants. The organizational unit 
is responsible for large scale software (LSS) product 
used in number of telecommunication network solutions 
that consist of distributed network nodes, which have to 
harmonically serve billions of end users. The main goal 
of organization is to effectively and efficiently develop 
parts of LSS that should consistently behave as a whole 
within one network node and moreover, coordinated 
with other network nodes in particular network scenario.  

The LSS product that the target organization is 
responsible for is characterized by more then thousand 
software components organized in modules with number 
of connections and interdependencies. The product has 
been evolutionary developed over the last 40 years. 
Currently, several hundreds of developers distributed 
across all over the world modify the LSS in distributed 
teams and several hundreds of integrators across the 
world integrate the LSS into number of different 
network scenarios.  

Such distributed global development requires huge 
communication effort. Furthermore, development work 
gets even more complicated with high quality and 
performance requirements, mainly caused by the fact 
that the system has to work in real time conditions, 
simultaneously serving millions of subscribers. 

The software development process that was 
traditionally used for development of this LSS product 
is an in house developed, mature sequential process that 
is very well established and documented. It is based on 
extensive usage of collaboration tools and well known 
by organizational personnel. Important is to mention 
that the target organization has a long experience of 
successful development of this target LSS product in 
GSD environment and has already implemented many 
of the improved methods, tools and techniques that 
enable effective and efficient software development. 

 
B. Business drivers 

 
The target organization has been faced with 

continuously growing market demands for faster, better, 
more efficient and more complex products delivery that 
continuously builds a rapid development environment. 
In this condition the organizations experience numerous 
problems. Development projects usually overlap each 
other on the same software base as is described in [16], 

thus implying increasing number of overlapped software 
product life cycles, and product versions. As a 
consequence the maintenance cost has been increased 
due to maintenance of several different versions of the 
same products, increased planning problems that have to 
avoid overlapping project issues and even more 
complicating communication, increased need for 
coordination, increased fault removal cost because every 
fault found in one project has to be mapped to all 
overlapping projects, increased product management 
complexity, increased product complexity, increased 
complexity of keeping right architecture modeling, 
increased need for special attention on dimensioning 
issues, backward compatibility issues, resource usage, 
uncertainty during whole project, frequent changes, 
customer trust, product quality issues, etc. 

Besides already mentioned problems, the challenges 
of working in GSD organization [17] are 
communication and coordination. Additional challenges 
due to development of LSS product are explained in 
[18]: how to coordinate design capabilities, how to keep 
groups responsible for development, maintenance and 
evolution enough agile to respond effectively to 
changes, how to adopt the process to handle these 
changes, how to minimize effort needed to integrate 
components built independently, how to organize 
processes so they converge on high quality designs, how 
to control activities within the process to make elements 
working in harmony and to ensure fulfillment of 
objectives, how to maintain overall quality of service 
while enabling flexibility in providing different levels of 
service to different groups, etc.  

Solution to these problems is seen through usage of 
evolutionary Agile ideas. The main opportunities for 
improvements applying Agile practices are following: 
incremental and iterative development allows parallel 
changes to many different systems that exist at the same 
time, much more testing is done 'in the field' and process 
of learning about effective solutions occurs through 
feedback from environment, the focus of engineering 
efforts is on change to small parts of the system rather 
than on change to the system as a whole, multiple small 
teams are involved in design and implementation of 
these changes.  

 
 

III. AGILE PRACTICES AND IMPROVEMENT 
PROJECT 

 
The selection of Agile practices offered by different 

research and industry studies that could add on business 
value has to be carefully planned. This is especially 
important in case of large GSD organization developing 
complex LSS, as in this study. The main goal before 
investing into improvement initiative is to address and 
carefully select required changes to the existing 
company standard process and to plan their incremental 
implementation into target software development 
project.  

 
A. Agile practices 

 
The key Agile practices are selected based on 

Ericsson development needs explained above, best 



practices published by other researchers, Ericsson 
internal best practices, and Ericsson best practices 
published in [19] and [21].  

The concept that has evolved over time based on 
experience from a number of organizations is founded 
on incremental system growth as oppose to big-bang 
integration, as illustrated in Fig 1.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 1. “Big-bang” vs. incremental system growth  

 
Incremental system growth implies frequent small 

deliveries, continuous verification of each delivery 
before integration with rest of the system, and planning 
and development from an integration perspective. 
    

1) Requirements: The requirements are prioritized 
prior of being inserted into the projects. Also, the 
project activities are committed according to 
organizational capability such as budget and available 
resources. In [20] it is stated that Agile development is 
more focused on developer's knowledge and due to that 
the requirements do not have to be so in detail. In case 
of GSD of LSS products the requirements are the main 
communicating tool, not only among GSD teams within 
the development project but also among GSD teams 
working on different product versions. The requirement 
details are needed not only for maintenance personnel 
but also for developers of future development iterations.  

To achieve efficient management and control of 
requirements though whole LSS lifecycle the 
requirement handling tool is introduced. The tool 
ensures the global visibility of changes, tracking of 
requirements through product life cycle and incremental 
integration plan based on shared milestone concept to 
integrate and coordinate GSD development.  

    
2) Project Planning and Monitoring: The first task of 

project planning is to identify pieces of system 
enhancements (called deltas „Δ“) from a set of high 
level features and system requirements. The pieces are 
chosen with focus on system architecture rather than 
organizational aspects. Each piece is fully implemented 
and verified separately.  

To find an optimal way of implementing new system 
changes, a project anatomy (also called delta anatomy) 
is used. The project anatomy is a center of planning 

cycle that shows all currently planned system changes 
and how they depend on each other (Fig 2). In that 
sense, the project planning is continuous planning of 
integration activities according to delta anatomy.  

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Project anatomy 

  
The dependencies constrain the order in which 

changes can be done. Changes without dependencies, 
for example, can be developed in parallel with each 
other. The project has to plan small software deliveries 
and frequent inspections of project progress based on 
working software.  
 

3) Software Design: The design is divided into 
verifiable system changes and behaves like a software 
factory that frequently delivers a new component tested 
system version, also called the Latest System Version 
(LSV). The system is developed in small steps 
according to Fig3.  

In between the steps there are intermediate versions 
of the design base used for daily development work. The 
idea is to get early feedback by having the system 
subject for testing as quickly and often as possible. A 
new LSV can ultimately be available every three weeks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Agile development strategy 
 

4) Testing and verification: It is proven that large 
changes that are verified late in the project, or not at all, 
leads to disaster. One of the strategies to attain good 
quality and delivery precision is to verify the system or 
product as early as possible, and before the system is 
integrated. 

Δ Δ Δ
Δ

Δ
Δ

Δ Δ

Δ ΔΔ
Δ

Δ
Δ – Anatomy

A

B
C

ΔΔ

Δ
Δ

Δ
Δ

R 3.0

R 4.0

Δ Δ Δ
Δ

Δ
Δ

Δ Δ

Δ ΔΔ
Δ

Δ
Δ – Anatomy

A

B
C

ΔΔ

Δ
Δ

Δ
Δ

R 3.0

R 4.0

21 272019181716

SD team

SD team

SD team

SD team

SD team

...

Verified
System
Qualities

Time

....

3 weeks

System Test

Δ
Δ
Δ

Δ
Δ

12 .... 1511

LSV

System
version

Time

Verified
System
Qualities

System
content

Code
size

1          2 3        4 ...       ... n

Verified
System
Qualities

Time

System
content



To obtain that, test activities are done in parallel so 
the regression test of existing functionality at 
verification level is run in parallel with function test 
activities. 

The first quality check is done by design teams doing 
basic test on component level. Focus is on 
automatization of all new test cases enabling also 
automatic regression test in future. The second level of 
tests is then done by the integration and regression test 
team.  
 

5) Software integration: Every week software 
delivery is integrated and regression tested on system 
level in the target environment. Regression test ensures 
that functionality that worked in the previous LSV is not 
broken. Weekly build and regression test of components 
is highly automated.  

There is a difference in incremental and iterative 
development. The implementation in this study implies 
both but on different levels. Due to system complexity, 
the system is integrated according to incremental 
development taking several features into one increment. 
Also, the features that are not ready for that system 
release are delivered in parts so the backward 
compatibility and their influence on the existing already 
working system could be checked.  

Unfortunately, the frequency of delivery is still not 
daily because of the problems already explained by [19]. 
The usage of weekly build instead of daily build 
technique is reported as more appropriate for similar 
industrial context in [9]. 
 

6) Teams: The Agile method does not require any 
special project or team organization. Teams can be 
organized as a cross-functional team or a component 
design team depending on the design environment, 
product complexity and product organization. 

To avoid parallel work in the same software a 
component design team may be the best choice, where 
each component (e.g. block) in the system is owned by a 
designer who has the full responsibility for its 
construction and qualities. This is the most common 
way to team up in Agile project. It is also possible to 
have different sub-systems organized in different ways. 
The important thing is to have synchronization points at 
the weekly build for all teams.    

 
B. Improvement project 
 

In order to implement above explained practices 
within development organization, the improvement 
project has been defined. The main task of the project 
was to integrate Agile practices into existing company 
standard processes and guide GSD teams in their 
implementation. The improvement project consisted of 
improvement workgroups, each covering one process 
area. Following process areas were identified: 
requirement handling, integration strategy, project 
monitoring and control, reviews and inspections, 
software quality measurement. The improvement 
workgroups were organized as cross-organizational 
teams formed of local experts in their process areas. 
Each workgroup has defined its own leader and group of 
workgroup leaders were forming cross-process group 

that was responsible for alignment of activities within 
different process areas. The improvement time plan and 
budget were defined per each workgroup, monitored 
and controlled at regular steering meetings involving the 
key stakeholders, such are unit manager, software 
development project manager and improvement project 
manager.  

 
 

IV. DISCUSSION AND EXPERIENCES 
 
In this Section we elaborate experiences from 

applying selected Agile practices and discuss findings 
along with reviewing the existing literature. 

According to [20], an organization should manage its 
processes in accordance to management process, 
establish the infrastructure under the processes according 
to the infrastructure process, provide training to its 
personnel according to the training process, and improve 
the processes following the improvement process. These 
processes are discussed in the following subsections. 

 
A. Management process 

 
In our experience, the organizational setup 

traditionally used for GSD development of LSS product 
has to change to accommodate needs of rapid 
development environment and selected improvement 
practices. According to our knowledge there is not so 
much said about the appropriate GSD organizational 
setup and division of work responsibility for 
implementing agile practices.  

For gaining maximal efficiency and effectiveness in 
implementing improvement activities described above, 
the GSD organizational setup should be adequately 
adopted in order to secure maximal possible 
independence among development sites. This means not 
only division of work following the LSS product 
architecture but also definition of all involved 
stakeholders and definition of clear communication 
interfaces with level of information transferred. The 
influence of organizational issues (especially local site 
issues) on GSD should be minimized.  

The most important aspect of organization is handling 
with its capability. The work prioritization is strongly 
dependent on resource availability, so when distributed 
teams develop the same LSS the most effective 
mechanisms for agreement should be secured. For the 
purpose of global resource management the proposal is 
to use collaboration tool. Also enhancements to project 
steering and control model where introduced compared 
to one presented [19] with additional more frequent 
check points named Go decisions included between so 
called Tollgates, which enable better and more efficient 
control. 

 
B. Infrastructure process 
 

There are many research studies on the topic of 
evaluating organizational readiness to implement agile 
principles based on the established infrastructure, as for 
example in [19]. The paper provides list of activities that 
an organization has to secure to implement daily build 



practice. Additionally to the list we define the following: 
capability of configuration management process 
(especially handling with system versions), level of 
automate tests, human competence to develop backward 
compatible smaller system improvements (functional or 
nonfunctional) and processes supported by collaboration 
tools. 
 
C. Training process 
 

In the highly mature organizations that have evolved 
through decades dealing always with the same business 
it is natural to have human resistance to change. 
According to our experience the right setup of opinion 
makers across organizational units is essential. 
Managers and their in time training with strong 
involvement into improvement programs by 
responsibility and authority proved to be successful. 
Also, frequent discussions with all involved suspicious 
and worried personnel are of outmost importance. This 
includes finding out the real root cause of their worries, 
strong change management leadership by finding the 
quick and efficient solutions to problems and then 
presenting solutions to everybody or making them 
visible on company walls.  

Agile practices require shift in the thinking of all 
involved within software life cycle such as customer, 
developer and manager. It is important to stress that the 
main changes are made by developers and these changes 
have many implications to their stakeholder. Also, 
having them as a part of prioritization team while 
organization has to balance its capabilities is not an easy 
task especially in large scale GSD development 
environment, when there are numerous customers of the 
same product. 

 
D. Improvement process 

 
 The improvement project in this study followed the 

company defined improvement process with addition of 
the Agile main ideas specified in the introduction. This 
means following: constant integration of improvement 
work done in each process area and workgroup, frequent 
reviews by software developers thus securing frequent 
feedback and alignment to their needs, working in cross 
organizational and cross process teams, prototyping 
solutions whenever possible, introduction of simple and 
small changes to the existing standard company process. 
Main benefit of such improvement process is that 
enables continuous iterative improvement by constant 
collaboration of organizational and project levels.  

Transition time while the changes are introduced is 
risky for the all ongoing regular development activities. 
Organization has to be aware that except all regular 
activities that are ongoing within one organization all 
work related to improvement has to be done and much 
energy must be spent on change management and 
regular training. Also reorganization according to new 
development philosophy in GSD organization requires 
significant time and energy. In our case one year of 
preparation and deployment is still not enough for fully 
applied selected agile practices. We believe that fully 
applying of Agile practices is the matter of practice 
gained through number of iterations applying them.  

E. Methods and tools 
 

Methods and processes that are new to already 
existing ways of working are best to be secured in 
advance, communicated prior to deployment, and 
training provided to personnel. Aligned with introducing 
the proposed methods, the needed tool support was 
secured. The main identified best practice is proactive 
collaboration of experts in the field (process 
practitioners) and tool development organization. Thus, 
all needs are communicated in the most efficient way for 
both tool and process developers. 

During the deployment of new tool, the tool 
champions were identified per each development 
location. Since the organization where the Agile was 
introduced was already mature for GSD conditions there 
was a number of instruments that support such 
environment already in place.  

Usage of resource management tool improves 
planning and managing organizational capability and 
was used within organizational management processes 
for requirement prioritization process. Anatomy 
planning tool was used for integration planning 
purposes that improves management of changes over 
project integration plan. Rational collaboration tools 
such as Clear case for code and product document 
storage and CDM for project documentation storage are 
company best practice already implemented that have 
just accelerated the improvement deployment. There are 
also collaboration tools that help in providing frequent 
feedback from all distributed personnel such as tools for 
fault reporting based on IBM Rational Clear Quest and 
MHWeb applications.  

There are many tools that belong to group of tools for 
common development environment that are available to 
distributed teams. For implementing Agile practices 
especially important for suppressing the chaos within 
the GSD of LSS are following tools: tool for signal 
coordination (interfaces), tool for handling of system 
data that are commonly used by all software 
components, tool for handling of system commands for 
system operation and maintenance. Additionally we 
have introduced the tool for common configuration 
management that is in our case IBM product MARS 
which proves efficient in GSD environment. Thanks to 
these tools, introducing Agile does not grow into chaotic 
behavior as stated in [12]. 

Another important issue that we have to solve is to 
adopt the testing tools for its limited usage to parts of 
the system whose complexity is appropriate to the tool 
in use. We experienced the problems with in house 
developed tools and their adaptation. The organizational 
parts that have used globally available commercial tools 
had better capability to adapt to the agile principles. 

 
 

V. CONCLUSION 
 
The current environment conditions force software 

development organizations to continuous change 
without exception. The way of organizing and managing 
software development activities is evolving to more 
efficient and effective models. The common opinion is 



that some software characteristics such as application, 
complexity, programming language, etc are the reasons 
for not evolving towards modern agile principles 
specified by manifesto. We believe that these principles 
are cornerstones for future software development and 
prerequisite for further evolution. We also believe that 
all software developments, no matter of its specifics, has 
to adapt to these principles. The implementation itself 
and methodology used for their implementation may 
however differ from application to application.  

In this study we presented application of agile 
principles to telecommunication large scale software 
with very large installed design base, that is network-
centric product with evolution history of more than 30 
years and very large mature global software 
development organization, which continuously adapts 
its product following very well documented and defined 
sequential processes. All these specifics do not prevent 
implementation of agile principles, but of course their 
interpretation and implementation is specific.  

The success of implementation of principles specified 
in [19] and [21] has been already proved within the 
Ericsson company and is applying across whole 
Ericsson organization as best practice. Even more, the 
implementation of these principles have pushed further 
improvements that are connected to tool supported 
usage of these principles and for improving collaborated 
agile work in GSD organization. So, the main 
contribution we identified with this paper is presenting 
Ericsson best practice in adopting Agile principles and 
the experiences gained. 
 

 
REFERENCES 

 
 [1] K. Beck, M. Beedle, V.A. Bennekum, A. Cockburn, W. 

Cunningham, M. Fowler, et. al., Manifesto for Agile 
development, www.AgileManifesto.org  

 [2] K. Beck, Extreme Programming Explained: Embrace 
Change, Addison-Wesley, Boston, 1999. 

  [3] A. Cockburn, Agile software Development, Addison-
Wesley, Boston, 2001. 

  [4] K. Schwaber, M. Beedle, Agile Software Development 
with Scrum, Prentice Hall PTR, New York, 2002.  

 [5] P. Abrahamsson, O. Solo, J. Ronkainen, J. Warstra, 
Agile software development methods: Review and 
Analysis, VTT Publications 478, Oulu, 2002.  

 [6] M. Huo, J. Verner, L. Zhu, M. A. Babar, Software 
Quality and Agile Methods, Proc. of the 28th Annual 
International Computer Software and Applications 
Conference (COMPSAC’04). 

 [7] M. Paasivaara, C. Lassenius, Could Global Software 
Development Benefit from Agile Methods?, Proc of the 
International Conference on Global Software 
Engineering, 2006. ICGSE '06. pp. 109-113. 

 [8] C. Rand, B. Eckfeldt, Aligning Strategic Planning with 
Agile Development: Extending Agile Thinking to 
Business Improvement, Proc. of the Agile Development 
Conference (ADC'04), pp. 78-82, IEEE Computer 
Society, Washington, DC, USA. 

 [9] M. Leszak, M. Meier, Successful Global Development of 
a Large-scale Embedded Telecommunications Product,  

  Proceedings of the International Conference on Global 
Software Engineering (ICGSE 2007), pp. 23-32, IEEE 
Computer Society, Washington, DC, USA. 

[10] C. Sepulveda, Agile Development and Remote Teams: 
Learning to Love the Phone, Proc. of the Conference on 
Agile Development, pp. 140, IEEE Computer Society, 
Washington, DC, USA. 

[11] M. Lindvall, D. Muthig, A. Dagnino, C. Wallin, M. 
Stupperich, D. Kiefer, J. May, T. Kahkonen, Agile 
Software Development in Large Organizations, 
Computer, pp. 26-34, IEEE Computer Society Press, 
Los Alamitos, CA, USA. 

[12] T. Kähkönen, Agile Methods for Large Organizations - 
Building Communities of Practice, Computer, Proc. of 
the Agile Development Conference (ADC'04), pp. 2-11, 
IEEE Computer Society, Los Alamitos, CA, USA. 

[13] P. Manhart, K. Schneider, Breaking the Ice for Agile 
Development of Embedded Software: An Industry 
Experience Report, Proc. of the 26th Int. Conference on 
Software Engineering (ICSE'04), pp. 378-386, IEEE 
Computer Society, Washington DC, USA. 

[14] B. S. Boelsterli, Iteration Advocate/Iteration Transition 
Meeting: Small Sampling of New agile Techniques Used 
at a Major Telecommunications Firm, Proc. of the 
Conference on Agile Development, pp. 109, IEEE 
Computer Society, Washington, DC, USA. 

[15] P. Hodgetts, Refactoring the Development Process: 
Experiences with the Incremental Adoption of Agile 
Practices, Proc. of the Conference on Agile 
Development (ADC'04), pp. 106-113, IEEE Computer 
Society, Washington, DC, USA. 

[16] T. Galinac and S. Golubić, Project Overlapping and Its 
Influence on the Product Quality, Proc. of the 8th 
International Conference on Telecommunications, pp. 
655-662, IEEE. 

[17] J. D. Herbsleb, “Global Software Engineering: The 
Future of Socio-technical Coordination”, Future of 
Software Engineering, International Conference on 
Software Engineering, IEEE Computer Society, 
Washington, DC, p. 188-198. 

[18] L. Northrop, P. Feiler, R. P. Gabriel, J. Goodenough, R. 
Linger, T. Longstaff, R. Kazman, M. Klein, D. Schmidt, 
K. Sullivan, and K.Wallnau, Ultra-Large-Scale Systems: 
The Software Challenge of the Future, Software 
Engineering Institute, Carnegie Mellon University, 
2006. 

[19] E.A. Karlsson, L. G. Andersson, P. Leion, Daily build 
and feature development in large distributed projects, 
Proc. of the 22nd international conference on Software 
engineering (ICSE'00), pp. 649—658, ACM, New York, 
NY, USA. 

[20] F. Paetsch, A. Eberlein, F. Maurer, Requirements 
Engineering and Agile Software Development, Proc. of 
the Twelfth International Workshop on Enabling 
Technologies (WETICE '03), pp. 308, IEEE Computer 
Society, Washington, DC, USA. 

[21] T. Galinac, Ž. Car, Software Verification Process 
Improvement Proposal Using Six Sigma, Lecture    
Notes in Computer Science Vol. 4589 (2007), pp. 51-64. 


