
Fault Slip Through Measurement Process Implementation
in CPP Software Verification

Ž. Antolić
R&D Center

Ericsson Nikola Tesla d.d.
Complete Address: Krapinska 45, Zagreb, HR-10000, Croatia

Phone: +385 1 365 4584 Fax: +385 1 365 4082 E-mail: zeljko.antolic@ericsson.com

Abstract - This paper gives an overview of Fault Slip
Through (FST) process related to software verification
improvements based on process measurement data. The
Fault Slip Through Process is a way to secure that software
faults are detected in the right verification phase. By
learning of our earlier mistakes during verification, the
organization can avoid doing them again. The process also
implements mechanisms for enabling future efficiency
work. Some proposals and future directions in the area of
software integration and verification processes are given.

I. INTRODUCTION

Common situation in software industry today is that
we are spending more than 50% of the development
time for testing activities in order to achieve required
quality level of our products [1]. Our intention is to
reduce the testing time by preventing the slippage of
faults through different testing phases. The right faults
should be found in the right project phase. That requires
a clear test strategy and focus on finding important
faults early. Since most faults should be found earlier,
we have to visualize the degree of fault slippage from
earlier phases and provide feedback backwards on
which types of faults that need to be captured earlier. In
that way, we avoid doing the same mistakes over and
over again, saving the testing effort and improving the
software product quality. The root cause analysis and
the right feedback to ongoing development projects is
the key for success. Analyzing the findings and
implementing the proposed improvements significantly
reduce the repeating of the same faults in the future.
Basic fault-slip-through measurement is ratio between
faults found in the current verification phase that should
have been found in earlier phase and number of faults
found in the current phase.

Analyzing the results from previous projects we have
found the following:

 60-70% of faults found in current verification
phase had slipped through previous verification
phase (component test to function test, function
test to system test, system test to customer);

 Fault-slip-through ratio is higher in early testing
phases (component test compared with function
test and system test).

After collection of results and root cause analysis, we
have provided feedback to design project with
recommendations for improvements and what should be
avoided in order not to repeat the faults, and not allow
fault slippage. By reducing the degree of fault-slip-
through we wanted to achieve:

 Fewer stopping faults;
 Earlier and cheaper fault removal;
 Less redundant testing;
 Improved delivery precision.

One of the key improvements identified at the several
workshops held during the year 2006 were to make
Fault Split Through (FST) analysis and use the
measurements to “close the gaps” [2]. That is to give
feedback to earlier development phases so that
improvements can be made in the organization to
increase product quality in the most cost efficient way.

In the beginning of 2006 the R&D management
decided to start an investigation regarding FST at CPP
(Connectivity Packet Platform), and in July 2006 it was
decided that FST shall be launched in our organization,
based on study in [9].

II. DEFINITION OF FAULT SLIP THROUGH

Fault Slip Through represents the number of faults
not detected in a certain activity. These faults have
instead been detected in a later activity [3].

Example (see Fig.1.): If a fault is detected in System
Verification that was supposed to be detected in Unit
Test, then there is a Fault Slip Through.

Fig.1. Definition of Fault Slip Through

The Test Strategy, Test Processes and CPP

development process define in which phase’s different
kind of faults are supposed to be detected [4], [5], [6].

If we take a look on fault patterns, it can be seen that
some of the faults have common patterns, i.e. they are
repeatable/systematic (see Fig.2.). This kind of faults is
usually avoidable (waste). Fault slippages can to a large
extent be considered ’waste’ [9].

SC CT FT LRT PAV SV EXT

Fault supposed
to be found Fault found

Fault Slip Through

Fault Latency

SC CT FT LRT PAV SV EXT

Fault supposed
to be found Fault found

Fault Slip Through

Fault Latency

Avoidable TRs (waste)
-Common patterns
-Repeatable/systematic

Avoidable TRs (waste)
-Common patterns
-Repeatable/systematic

Unavoidable TRs
-Project specific
-Random mistakes

Unavoidable TRs
-Project specific
-Random mistakes

Fig.2. Fault Patterns

III. THE FAULT SLIP THROUGH PROCESS

The Fault Slip Through Process is a way to secure
that faults are detected in the right phase. By learning of
our earlier mistakes, the organization can avoid doing
them again. The process also implements mechanisms
for enabling future efficiency work.

Right phase means the most cost efficient phase. A
general guideline is that it’s cheaper to detect faults
early in the development process, “earlier is cheaper”
[7]. This is not always true since it’s also related to a
cost to detect faults. Some faults might be more cost
efficient to detect later in a development process.

Fault Slip Through analysis brings many advantages:
 Early and cost effective fault detection;
 Provides useful feedback regarding fault

introduction in product and process;
 Enables fault slippage measurements which helps

us to identify improvements areas throughout the
development process;

 Learning from earlier mistakes and avoid doing
them again;

 Less redundant testing and closer test
coordination;

 Improved quality and less stopping TRs (Trouble
Reports);

 Shorter lead times and improved delivery
precision.

Fault Slip Through can also be used to:
 Evaluate effectiveness of verification methods

and tools;
 Evaluate and predict product quality in a project;
 Input to characterize the capability and fault

detection profile of an organization.
The FST can be related to the whole software

development process, from specification to design and
test. The quality of a product is built in during the early
phases. The test at the end is only meant to be a
confirmation of the adherence to the requirements.

Different kind of faults is supposed to be found in
different phases. The most efficient and cost effective
way is to capture the fault close to the introduction.
Each development activity has to be responsible for its
own errors [10].

An outstanding quality assurance method is reviewing
each others work. It is no matter if it is a specification,
source code or other kinds of written text. It is much

more cost efficient to find faults in Reviews and
Inspections than executing test cases [8].

With the FST measurements we are aiming for to give
feedback to the different actors and teams. They have
the responsibility to improve their own process and fault
prevention strategy.

The Fault Slip Through TR (Trouble Report) analysis
is an extension of the TR analysis. The FST process is
therefore related to the TR Process. A Fault Slip
Through Process can be divided into five different steps:

1. Fault Slip Through Analysis for each TR
- Part of the TR analysis, ”daily work”;

2. Measure Fault Slip Through;
3. Analyze the Fault Slip Through results

- Might trigger a Root Cause Analysis (RCA)
- Can be made on all levels within the
organization, at all times;

4. Identify and implement improvements;
5. Reporting and follow up.
The TR Fault Slip Through analysis shall be made for

all CPP TRs and is an extension of the ordinary TR
analysis. This analysis is the base for all further
measurements and analyses and can be seen as a part of
the daily work.

Five fields have been introduced in the TR handling
tool on order to do the FST analysis. These five fields
are the following:

 DIDDET – Where the fault was detected;
 SHODET – Where the fault was supposed to be

detected;
 INTROD – Where the fault was introduced;
 TC – Was there a TC in the SHODET phase;
 INFO – Free text field for additional information.

Step two of the Fault Slip Through analysis is to
measure fault slippage. Only the DIDDET and
SHODET fields shall be used for Fault Slip Through
measurements.

There are two ways to measure FST:
 Fault slippage from a phase;
 Fault slippage to a phase.

The project and/or line organization have the
responsibility to generate the Fault Slip Through
measurements.

At CPP a special FST Measurement Tool has been
created for FST measurements [12].

The Fault Slip Through Matrix is the source to all
measurements and further analysis. In the Fig.3. below
is the Fault Slip Through Matrix described in detail, and
how measurements are performed on a general level.

To make the FST measurements more useful, three
KPI’s (Key Performance Indicators) have been
identified:

 FST to Design I&V;
 FST to System I&V;
 FST to CPP Customers.

where
 Design is the Document Inspection, Code

Review, HW Basic Test, Component Test and
Multiple Component Test phases;

 Design I&V is the Light Regression Test,
Function Test and Quality Criteria Test phases;

 System I&V is the System I&V phase;
 CPP Customers is Application, Network Level

and Ericsson External Customer.
Fault Slip Through to a phase is measured vertically

in the matrix. The summary of all phases “above” the
measured phase is compared to the total number of TRs
in that phase. Fault Slip Through from a phase is
measured horizontally in the matrix. The summary of all
phases “after” the measured phase is compared to the
total number of TRs in that phase.

There are many ways to measure Fault Slip Through
and it’s up to the user of the process to decide how the
measurements shall be performed.

It’s important that the number of TRs in the
measurement data is large enough to generate relevant
statistics. The database query shall not be narrow so the
number of TRs becomes to low.

Using FST for performance benchmarking of
products and organizations is not recommendable
because of:

 Product differences: Product maturity,
complexity and architecture will affect fault
slippage ratio;

 Process differences: Organizations using parallel
testing processes tends to have higher fault
slippage;

 Definition differences: Fault Slip Through might
be defined differently.

The FST measurements are not covering the
following scenarios:

 Slippage between product releases;
 Slippage between projects.

IV. ANALYSIS OF FST RESULTS

Once the measurement results are available it’s time

to analyze the Fault Slip Through results. It is possible
to identify:

 Phases with low slippage;
 Phases with high slippage.

Phases with low slippage can be used as good
practices. Phases with high slippage can trigger a Root
Cause Analysis (RCA) in order to identify why there are
slippage problems in this phase [11].

The INTROD and TC fields can be very useful and
support the analysis. It’s the owner of each phase that’s
responsible to do the analysis.

Fault Slip Through is just not a measure, it is a
concept for continuous improvements, and phases with
high fault slippage need to be improved. A Root Cause
Analysis (RCA) is one way to deal with the problems in
this phase. An RCA is a problem analysis aimed at
investigating why faults were not detected in the phase
where they were supposed to be detected.

It’s the line organization that’s responsible to identify
improvements, perform RCA and implement identified
improvements.

Reporting and follow up of Fault Slip Through is
important to keep focus on results and implemented
improvements.

It’s up to the process user to decide in what way and
how often FST shall be reported. Reporting can be made
both by project and/or the line organization.

Recommendation is to use already established ways
of reporting such as:

CPP FST KPI's
FST to Design I&V

FST to System I&V

FST to CPP Customers
DIDDET
SHODET DI CR HWBT CT MCT FT LRT QCT SV APP NWL EXT

FST
TRs

Tot.
TRs

FST
from

DI 28 3 0 4 2 8 4 0 9 17 2 2 51 79 65%
CR 58 0 8 1 21 5 1 40 17 2 8 103 161 64%
HWBT 0 0 0 0 0 0 1 0 0 3 4 4 100%
CT 53 5 87 5 2 41 12 2 11 184 237 78%
MCT 31 3 1 0 4 2 2 2 17 48 35%
FT 320 15 0 32 27 3 19 171 491 35%
LRT 69 1 10 3 0 0 20 89 22%
QCT 21 0 1 0 0 1 22 5%
SV 213 14 2 9 25 238 11%
APP 47 1 8 9 56
NWL 4 8 8 12
WP Slip 19 3 75 6 103 103
FST TRs 0 3 0 31 11 194 36 4 137 93 14 70 593
Tot. TRs 28 61 0 84 42 514 105 25 350 140 18 70 1437
FST to 0% 5% 0% 37% 26% 38% 34% 16% 39%

 No fault slippage (faults found in "right" phase)
 Fault slippage (faults found in "wrong" phase)
 Fault slippage between Work Packages (within the same phase)
 Not relevant

13%

Fig 3. Fault Slip Through Matrix

 Monthly reports from Line and Project
Management;

 Line Management meetings;
 Operating Steering Group (OSG) meetings;
 Project meetings.

V. FAULT SLIP THROUGH GOALS

It is recommended that Fault Slip Through goals to be

used are set by the organization. The goals can be set for
the entire organization or for a certain project phase. The
following goal setting process can be used:

1. Get baseline;
2. Set improvement goals

 Example: FST to System Verification shall
decrease by 10%;

3. Determine how to achieve the goal
 Example: Do an RCA on phases with high

slippage, and identify and implement suitable
improvements;

4. Decide how and when to follow up goals
 Example: At the OSG meetings;

5. Start over from step 1.
Use Fault Slip Through to a phase when defining FST

goals. FST from a phase is not recommended since it
can take long time to obtain required measurement data
(the product must have been used live in the field for a
while before you know the final value). FST from a
phase is a better way to identify phases with high
slippage.

Once a decent FST level is reached by the
organization, the goal shall be to keep the slippage on
this level.

It is not recommended to set FST goals to zero. Some
amount of slippage is natural within a design
organization. It’s also the most cost efficient strategy
since it’s related to a high cost to find the last faults and
difficult to determine when the product is completely
free from faults.

The one project example of FST goals and follow-up
of results is shown on Fig.4.

Fig.4. FST Goals and follow-up

VI. ADDITIONAL ANALYSIS OF FST RESULTS

Based on the measurement results generated in FST

Matrix, it is possible to perform additional analysis.
Some of project examples are shown on the next figures.

A. FST to Each Phase

The results of ‘FST to Each Phase’ measurement are

shown on the Fig.5. It can be noticed that slippage level
is about 60-70% between phases. It means that 60-70%
of faults found in current verification phase are
supposed to be found in the previous verification phases.

Fig.5. FST to Each Phase

B. FST from Each Phase

The results of ‘FST from Each Phase’ measurement

are shown on Fig.6. It can be noticed very high level of
fault slippage from early phases of development.

The HW basic test has 100% of fault slippage, but too
small number of TRs to make some conclusions.

The Document Inspection and Component Test are
definitely areas for improvements. They have high
number of TRs, and high percentage of fault slippage. In
addition, fault removal in these phases is the most
effective.

Fig.6. FST from Each Phase

0%

20%

40%

60%

80%

100%

July Aug Sept Oct Nov Dec

FST to Design I&V

FST to System I&V

FST to CPP Customers

Dashed lines indicate FST goals
(valid from October)

0%

20%

40%

60%

80%

100%

July Aug Sept Oct Nov Dec

FST to Design I&V

FST to System I&V

FST to CPP Customers

Dashed lines indicate FST goals
(valid from October)

FST from each phase [%]

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

DI CR HWBT CT MCT FT LRT QCT SV

DI CR HWBT CT MCT FT LRT QCT SV
FST TRs 71 148 4 275 17 234 20 1 47
Tot TRs 99 206 4 288 17 354 47 3 147
FST from 72% 72% 100% 95% 100% 66% 43% 33% 32%

FST from each phase [%]

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

DI CR HWBT CT MCT FT LRT QCT SV

DI CR HWBT CT MCT FT LRT QCT SV
FST TRs 71 148 4 275 17 234 20 1 47
Tot TRs 99 206 4 288 17 354 47 3 147
FST from 72% 72% 100% 95% 100% 66% 43% 33% 32%

FST to each phase [%]

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

DI CR HWBT CT MCT FT LRT QCT SV CPP
Customers

DI CR HWBT CT MCT FT LRT QCT SV
CPP

Customers
FST TRs 0 3 0 31 11 252 46 4 159 330
Total TRs 28 61 0 44 11 372 73 6 259 1081
FST 0% 5% 0% 70% 100% 68% 63% 67% 61% 31%

FST to each phase [%]

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

DI CR HWBT CT MCT FT LRT QCT SV CPP
Customers

DI CR HWBT CT MCT FT LRT QCT SV
CPP

Customers
FST TRs 0 3 0 31 11 252 46 4 159 330
Total TRs 28 61 0 44 11 372 73 6 259 1081
FST 0% 5% 0% 70% 100% 68% 63% 67% 61% 31%

C. CPP Fault Introduction

The results of ‘CPP Fault Introduction’ measurement

are shown on Fig.7. It can be noticed that most of the
faults are classified as Source Code Faults, meaning that
fault is introduced in coding phase. The more detailed
analysis resulted with fact that these data are maybe not
representative, because some of faults related to
requirements and specification documents are classified
as Source Code Faults. In fact, the source code is faulty,
i.e. problem solution is implemented in the code, but
fault origin is in many cases in the early development
phases.

This measurement requires further improvements, and
TR handlers’ education about correct specifying fault
introduction phase.

Fig.7. CPP Fault Introduction

D. Missing Test Cases

The results of ‘Missing Test Cases’ measurements are

shown on Fig.8. It can be noticed high percentage of
missing test cases in the verification phases. That means
the fault would not occur or slip through if test case
exists. Based on these results, we have started
improvement activities on writing of new test cases, and
improving of the existing test configurations. The
positive effects are expected in the next development
project.

Fig.8. Missing Test Cases

VII. FST IMPLEMENTATION IN THE
ORGANIZATION

In order to implement the FST in the organization, it

is recommended to take the following steps [9]:
 Determine the business goal of introducing FST,

for example whether the goal is to reduce the
number of customer faults with X% or to reduce
the lead-time with X weeks;

 Create a common understanding and
commitment;

 Identify a driver. Someone with authority and
true interest in implementing the concept is
crucial to make the implementation successful.
Otherwise, it will as most other improvement
work be down-prioritized every time a project
emergency occur (which tend to be very often);

 Make sure that the test strategy is well-defined
and communicated throughout the organization;

 Perform a baseline measurement on a finished
project (or at least a subset of TRs from a
project). Doing this is a good test to see that the
measure is possible to apply in relation to the
defined test strategy, and the baseline is very
good to have as comparison when applying it on
the first new project;

 Add the measure to the local TR process. If the
measure is included in the TR process, follow-up
will be a lot easier;

 Educate. People must understand how to report
the measured data, and even more importantly
understand why it is important to measure;

 Identify a pilot project to apply it in. This first
project needs extra attention regarding follow-up
of how well the measurement reporting works.
Correct eventual issues directly;

 Visualize results early to determine status and to
further show people that it is important (people
tend to care more about visible measurements);

 Continuously monitor the status in relation to
implemented improvements (and adjust
measurement process when issues are identified).

Success factors for the implementation in first project
are the following:

 Make sure that people understand the purpose
- It is not just a measure for managers, it is about
determining how efficient the process is, and
identify improvements so that we can become
better;

 Make people think in the same way
- Explain the definition and educate with example
Trouble Reports;

 Provide hints to use when unsure
- Example: “In the component test all code
should be executed”. Means that if a code
segment fails no matter the input, it should have
been found in component test.

 In the beginning, check regularly that people
follow the guidelines.

The activities related to deployment of FST process in
the organization and CPP projects had required the
following investments:

CPP Fault Introduction

0

100

200
300
400

500

600
700

800
900

MIS REQ SDD VTD UGD BPD SCF HWD 3PP HWF OTH

MIS REQ SDD VTD UGD BPD SCF HWD 3PP HWF OTH
8 44 74 13 26 29 779 7 89 4 148

CPP Fault Introduction

0

100

200
300
400

500

600
700

800
900

MIS REQ SDD VTD UGD BPD SCF HWD 3PP HWF OTH

MIS REQ SDD VTD UGD BPD SCF HWD 3PP HWF OTH
8 44 74 13 26 29 779 7 89 4 148

Missing TCs in the SHODET phase [%]

0%

10%

20%

30%

40%

50%

60%

DI CR HWBT CT MCT FT LRT QCT SV

DI CR HWBT CT MCT FT LRT QCT SV
FST from 71 148 4 275 17 234 20 1 47
Missing TCs 22 51 2 115 7 67 6 0 16
Percentage 31% 34% 50% 42% 41% 29% 30% 0% 34%

Missing TCs in the SHODET phase [%]

0%

10%

20%

30%

40%

50%

60%

DI CR HWBT CT MCT FT LRT QCT SV

DI CR HWBT CT MCT FT LRT QCT SV
FST from 71 148 4 275 17 234 20 1 47
Missing TCs 22 51 2 115 7 67 6 0 16
Percentage 31% 34% 50% 42% 41% 29% 30% 0% 34%

 FST Measurement Toll development
(initial investment, 50 man-hours);

 Competence build-up for designers and testers
(3 man-hours per designer/tester);

 Measurement activities in the project
(1 man-hour per month for each project);

 Analysis of measurement results
(5 man-hours per month for each project).

Savings achieved by implementation of improvements
based on analyzed results are few times higher than
investments, already in the first project where FST
process is introduced.

Project quality manager is responsible for
implementation, and control of the FST process. Test
manager is responsible for data analysis, and suggested
improvements implementation, based on collected
results.

VIII. CONCLUSION

The Fault Slip Through process is coming from

software development projects at Ericsson for CPP
product. We have started this process as improvement
program, and have implemented in all development
projects from the middle of year 2006. The data were
collected and analyzed on monthly basis, and used as
input for further improvement activities in the
verification phase of the projects.

By applying Fault Slip Through process we have
achieved in the short time period improvements of fault
slippage to customer, improvements of test
configurations, and improvements of test cases used in
verification phase of the projects.

The further work on Fault Slip Through process is
expected on more automated data collection, and more
accurate data, less depending on software testers’
judgment.

In the future, we can expect more demands on
software product quality, reduced project lead-time, and
reduced project budgets. The only possible way how to
answer on these demands is to work continuously on the
software development and verification process
improvements, with focus on fault-free software
delivered to our customers [11].

REFERENCES

[1] ***, “An Introduction to Software Testing,” IPL
Information Processing Ltd., Bath, United Kingdom,
2002.

[2] ***, “The three main R&D problems and how to attack
them”, Internal Ericsson documentation, Stockholm,
Sweden, 2005.

[3] ***, “Faults-slip-through measurement”, Internal
Ericsson documentation, Karlskrona, Sweden, 2005.

[4] ***, “PP&T I&V General Test Strategy”, Internal
Ericsson documentation, Stockholm, Sweden, 2005.

[5] ***, “Cello Packet Platform Integration and Verification
Process”, Internal Ericsson Documentation, Stockholm,
Sweden, 2004.

[5] Z. Antolic, “Integration Centric Approach in Software
Development as Solution for Process and Quality
Improvements”, Proceedings MIPRO 2006, 29th
International conference, pp. 117-122, Opatija, Croatia,
2006.

[7] Z. Antolic, “Software Integration and Verification
Process and Quality Improvements on CPP System”,
Proceedings MELECON 2006, 13th IEEE Mediterranean
Electrotechnical Conference, Malaga, Spain, 2006.

[8] Z. Antolic and S. Golubic, “Integration & Verification -
Possible approaches and impacts on software product
quality”, Proceedings MIPRO 2005, 28th International
conference, pp. 170-175, Opatija, Croatia, 2005.

[9] L.O. Damm, “Fault Slip Through Measurements –
Tutorial”, Internal Ericsson documentation, Karlskrona,
Sweden, 2006.

[10] E. van Veenendaal, M. Pol, “A Test Management
Approach for Structured Testing”, Netherlands, 1996.

[11] ***, “Towards Testing Excellence”, Internal Ericsson
documentation, Stockholm, Sweden, 2005.

[12] ***, “Faults Slip Through Process for CPP”, Internal
Ericsson documentation, Stockholm, Sweden, 2006.

